При характеристике вариации с учетом отклонений каждого из вариантов от их средней величины нужно иметь в виду, что:
• отклонений при этом получается столько, сколько и самих вариантов;
• сумма всех таких отклонений, по свойству средней арифметической, всегда равняется нулю.
Поэтому для обобщенной характеристики размера этих отклонений условно допускается, что все отклонения имеют одинаковый знак и рассчитывается их средняя величина. Таким образом, среднее арифметическое (линейное) отклонение исчисляется из модулей отклонений (взятых без их знака) по формуле средней арифметической.
Среднее линейное отклонение как мера вариации признака в статистической практике применяется редко. Во многих случаях этот показатель не раскрывает полной картины степени рассеивания (вариация) признака.
Рассмотренные показатели вариации (R и ) являются именованными числами, т.е. выражаются в той же единице измерения, в какой выражены варианты и средняя арифметическая данного вариационного ряда. В статистических исследованиях приходится изучать характер рассеивания в различных распределениях: когда ряды представлены различными объемами совокупности для одного и того же признака, при различных значениях средних по одноименным признакам, для сравнения различных совокупностей.
В этих случаях для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Расчет показателей меры относительной вариации осуществляется как отношение абсолютного или среднего показателя вариации к средней арифметической, умножаемое на 100%.
Используя в качестве абсолютного показателя рассеивания размах вариации (R) рассчитывается такой показатель относительного рассеивания как коэффициент осцилляции.
Аналогично для среднего линейного отклонения рассчитывается относительное линейное отклонение.
ВЕРНУТЬСЯ НАЗАД В КАТЕГОРИЮ САЙТА↓